Contrasteric Regioselectivity of Palladium(0) Catalyzed Couplings of Alkynes with a Bis(enoltriflate). Novel Syntheses of *E*-Configurated Dienediynes

Jean Suffert*§), Anke Eggers#), Stefan W. Scheuplein#), and Reinhard Brückner*#)

 [#]) Institut für Organische Chemie der Georg-August-Universität, Tammannstr. 2, D-3400 Göttingen, Germany;
[§]) Laboratoire de Pharmacochimie Moléculaire, Centre de Neurochimie du CNRS, 5 rue Blaise Pascal, F-67084 Strasbourg Cedex, France

Abstract: Two consecutive $PdCl_2(PPh_3)_2$ catalyzed couplings of the bis(enoltriflate) E-2 with two different alkynes were performed as one-pot reactions; they provided 3:1-7:1 mixtures of dienediynes E-3a'-l' and E-3a-l in 48-91% yield. Selective syntheses of such dienediynes were achieved by Pd mediated couplings of enolnonaflate E-6 with an alkyne followed by addition of a lithium acetylide and by dehydration.

Neocarzinostatin chromophore ("NCS") is a highly strained and exceedingly labile bicyclic dienediyne ¹. Its most noteworthy property is the capability to cleave DNA ². This initiated an intensive search for more stable and hopefully equally DNA-cleaving dienediyne models. Wender et al. were the first to obtain isoand heterocyclic *bicyclic* dienediyne models of NCS ³. A stream of related reports has emerged since then ⁴. One interesting contribution was the first synthesis of NCS-related *monocyclic* dienediynes by Terashima and coworkers ⁵ who prepared an *E*-dienediyne *E*-3 and its isomer *Z*-3. A shorter synthesis of related *Z*-dienediynes *Z*-1 was developed in our laboratories; it was based on the Pd catalyzed of the bis(enoltriflate) ("bistriflate") *Z*-3 with two equivalents of one alkyne ⁶. An equally straightforward procedure starting from the *E*-configurated bistriflate *E*-2 led to the isomeric *E*-dienediynes *E*-1 ⁷. A report by Terashima et al. about identical approaches to *Z*- and *E*-1 appeared thereafter ⁸. Extending this strategy, we prepared dienediynes *Z*-3 by submitting the bistriflate *Z*-2 to two consecutive Pd-mediated couplings with two *different* alkynes ⁹; as expected, the less hindered semicyclic C=C bond is attached to the first alkyne and the endocyclic C=C bond to the second. Again, Terashima's group was on our heels ¹⁰.

The present investigation concerned consecutive Pd-mediated couplings of the *E*-configurated bistriflate *E*-2 (0.08 M) with two different alkynes. Because of the faster reaction of exo- vs. endocyclic triflate group in the *Z*-series, we were surprised that *E*-2 couples preferentially at the *endocyclic* position. Consecutive additions - in the presence of catalytic amounts of PdCl₂(PPh₃)₂ and CuI - of C=C-R¹ and C=C-R² to *E*-2 furnished the dienediynes *E*-3'a-I/*E*-3a-I ¹¹ as 87:13 - 75:25 mixtures in 48-91% yield after flash chromatography on silica ¹². When the order of the addition was reversed, we isolated the same dienediynes as before but in (almost) opposite ratios. The previous major constituent became the minor component, and *vice versa*. Three pairs of compounds 3d (vs. 3c), 3j (vs. 3i), and 3l (vs. 3k) were assigned structurally because of a 2 Hz ⁵J H,H-coupling between the highlighted protons of the group (=)CH-C=C-CH₂-R: The occurrence of this coupling indicates the alkyne which has replaced the exocyclic triflate moiety. The assignment of 3c vs. d was corroborated by and the distinction of 3a vs. b and of 3e vs. f founded upon $\delta(sp^2-H)$ comparisons with independently synthesized material (*vide infra*). The structures of isomers 3g vs. h followed from correlating their $\delta(sp^2-H)$ values with those of the closely related compounds 3e, f.

E-1	R (2.4 eq.). 0.04 PdL4, 0.15 CuI, 3:1 THF:iPr ₂ NH, room temp., 0.5-18h; 26-100% (ref. 7)	E-2		R ₁ (1.1 eq.) 0.05 PdL ₄ , 0.15 CuI, 3:1 THF::Pr ₂ NH, room temp.; 0.5- 16h: no workup		addition of R ² (2-5 eq.), 1-48 b
R ¹	R ²	Yield	E-3'	E-3	E-3':E-3	R ²
C(pClC ₆ H ₄) ₂ OSirBuMe ₂	CH ₂ SiMe ₃	48%	a = 3 b	3a	75:25 ¹³⁾	
CH ₂ SiMe ₃	C(pClC6H4)2OSitBuMe2	55%	b = 3a	3 b	68:32 ¹³⁾	()
SiMe ₃	CH ₂ OSitBuMe ₂	83%	c = 3 d	3 c	80:20	
CH ₂ OSitBuMe ₂	SiMe3	91%	d = 3 c	3 d	80:20	E-3'a-1
Сн₂ОТНР	CH ₂ OSitBuMe ₂	63%	e = 3f	3e	77:23	
CH ₂ OSitBuMe ₂	Сн ₂ отнр	74%	f = 3•	31	81:19	+
CH₂OTHP	CH ₂ OSi/BuPh ₂	72 %	g ≃ 3 h	3 g	82:18	K:
CH ₂ OSitBuPh ₂	CH₂OTHP	62%	h = 3g	3 h	87:13	
CH ₂ OSitBuPh ₂	SiMe3	53%	i = 3 j	31	80:20	R^2
SiMe ₃	CH2OSitBuPh2	68%	j = 3i	3 j	80:20	$\langle \rangle$
CH ₂ SiMe ₃	C(pClC ₆ H ₄) ₂ OH	68%	k = 31	3 K	75:25	
C(pClC ₆ H ₄) ₂ OH	CH ₂ SiMe ₃	54%	l = 3k	31	80:20	E-3a-1

These experiments mean that bistriflate E-2 undergoes the Pd catalyzed C-C bond formation at the sterically more hindered endocyclic sp² center (to which no H is attached) in preference to the exocyclic sp² center (bearing one H). This finding contrasts with the behavior of the isomeric bistriflate Z-2 and cannot presently be explained.

In order to safely assign the structures of dienediynes 3a-f we synthesized them on an independent route. It started from monotriflate E-4 - now more efficiently and less expensively accessible from formylcyclopentanone (5) ¹⁴ than previously described due to replacement of 2,6-di-*tert*-butylpyridine through collidine - or from the similarly prepared nonaflate E-6. The latter's *E*-configuration followed from its $\delta(sp^2-H) = 7.54$ which is close to 7.49 of $E-4^7$ and different from 6.62 of Z-4⁶.

Both the triflate E-4 (0.44 M) and the nonaflate E-6 (0.06-0.35 M) coupled smoothly with alkynes giving the enynones in 57-73% yield. 7-11 were E-configurated because of the 6.34-6.50 range of their $\delta(sp^2-H)$ values and the identity of $\delta(sp^2-H)_9$ with the literature value 6.36⁵. Subsequent addition of a second alkyne as the lithium acetylide gave the moderately stable carbinols 12-17 (43-80%). They were converted into the desired dienediynes E-3a-f in 46-75% yield by treatment with mesylchloride/triethylamine. The virtue of *this* route is that the dienedynes are obtained isomerically pure.

The *E*-configuration of the newly prepared dienediynes E-3 was expected under the plausible assumption that the *established E*-configuration of their precursors 2, 4, 6, and 7-11 was preserved during the

subsequent manipulations. In addition, we sought *definitive* confirmation in the exemplary case of dienediyne 3k. On the one hand, it was obtained with the *E* configuration following Terashima's strategy ⁵ by converting enynone 8 into triflate *E*-18 and coupling it with the required alkyne. On the other hand, *Z*-configurated 3k was obtained from the known triflate *Z*-18 following our already described procedure ⁹. While the ¹H and ¹³C NMR-spectra of *E*- and *Z*-3k were very similar in general, a conspicuous difference is the chemical shift value for 4'-H₂: It is 1.69 (d, ⁵J = 2.4 Hz) in the *E* and 1.15 (m_c) in the *Z* isomer. The main constituent in the *E*-3'l (=3k) / *E*-3l mixture described above had $\delta(4'-H_2)$ 1.70. This means, it possesses indeed the *E* geometry.

ACKNOWLEDGMENT: We received generous donations of triflic acid by RHONE-POULENC (St Fons), of triflic anhydride by MERCK-SCHUCHARDT, of perfluorobutanesulfonylfluoride by BAYER AG, of palladium(II)chloride by DEGUSSA AG, and of chlorosilanes by HÜLS AG. R. B. and coworkers are indebted to the VOLKSWAGENSTIFTUNG and the FONDS DER CHEMI-SCHEN INDUSTRIE for financial support, J. S. to Professor C. G. WERMUTH for research facilities and to the CNRS.

REFERENCES AND NOTES:

- Ishida, N.; Miyazaki K.; Kumagai, K. M.; Rikimaru M., J. Antibiot., Ser. A, 1965, 18, 68-76.-Structure elucidation: Edo, K.; Mizugaki, M.; Koide, Y.; Seto, H.; Furihata, K.; Otake, N.; Ishida, N. Tetrahedron Lett. 1985, 26, 331-334; Myers, A. G.; Proteau, P. J.; Handel, T. M. J. Am. Chem. Soc. 1988, 110, 7212-7214.
- Modes of action of NCS and related antibiotics: Nicolaou, K. C.; Dai, W. M. Angew. Chem., 1991, 103, 1453-1481; Angew. Chem., Int. Ed. Engl. 1991, 30, 1387-1416; Goldberg, I. H. Acc. Chem. Res. 1991, 24, 191-198.
- Wender, P. A.; Harmata, M.; Jeffrey, D.; Mukai, C.; Suffert, J. Tetrahedron Lett. 1988, 29, 909-912.
- Leading references: Tokuda, M.; Fujiwara, K.; Gomibuchi, T.; Hirama, M.; Uesugi, M.; Sugiura, Y. Tetrahedron Lett. 1993, 34, 669-672. Mikami, K.; Matsueda, H.; Nakai, T. Synlett 1993, 23-25. Petasis, N. A.; Teets, K. A. Tetrahedron Lett. 1993, 34, 805-808.
- Nakatani, K.; Arai, K.; Hirayama, N.; Matsuda, F.; Terashima, S. Tetrahedron Lett. 1990, 31, 2323-2326.- Full account of this work: Nakatani, K.; Arai, K.; Hirayama, N.; Matsuda, F.; Terashima, S. Tetrahedron 1992, 48, 633-650.
- 6. Brückner, R.; Scheuplein, S. W.; Suffert, J. Tetrahedron Lett. 1991, 32, 1449-1452.
- 7. Suffert, J.; Brückner, R. Tetrahedron Lett. 1991, 32, 1453-1456.
- 8. Nakatani, K.; Arai, K.; Yamada, K.; Terashima, S. Tetrahedron Lett. 1991, 32, 3405-3406.
- 9. Scheuplein, S. W.; Harms, K.; Brückner, R.; Suffert, J. Chem. Ber. 1992, 125, 271-278.
- Nakatani, K.; Arai, K.; Yamada, K.; Terashima, S. Tetrahedron 1992, 48, 3045-3060.- Another application of this strategy: Nakatani, K.; Arai, K.; Terashima, S. J. Chem. Soc., Chem. Commun. 1992, 289-291.
- Compounds E-3a-f, E-3k, E-6, and 7-17 gave satisfactory 250, 300 or 500 MHz ¹H-NMR spectra ¹⁵, combustion analyses, and/or high resolution mass spectra. The dienediyne mixtures E-3'a-1/E-3a-1 ¹³, Z-3k, and E-18 were only characterized by 200 MHz ¹H- and 50 MHz ¹³C-NMR spectra.
- 12. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
- 13. The mixtures E-3'a/E-3a and E-3'b/E-3b were contaminated with 31 and 45%, respectively, of the dienediyne E-3 [$\mathbb{R}^1 = \mathbb{R}^2 = C(pClC_6H_4)_2OSitBuMe_2$].
- 14. Eaton, P. E.; Jobe, P. G. Synthesis 1983, 796-797; Myers, A. G.; Harrington, P. M.; Kuo, E. Y. J. Am. Chem. Soc. 1991, 113, 694-695.
- 15. Compound 14 gave some elimination product 3c during ¹H-NMR spectroscopy.

(Received in France 19 March 1993; accepted 27 April 1993)